Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chimia (Aarau) ; 75(12): 1004-1011, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34920768

RESUMO

This article describes four fluorescent membrane tension probes that have been designed, synthesized, evaluated, commercialized and applied to current biology challenges in the context of the NCCR Chemical Biology. Their names are Flipper-TR®, ER Flipper-TR®, Lyso Flipper-TR®, and Mito Flipper-TR®. They are available from Spirochrome.


Assuntos
Corantes Fluorescentes , Potencial da Membrana Mitocondrial , Corantes , Microscopia de Fluorescência
2.
Langmuir ; 36(29): 8610-8616, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32609528

RESUMO

In a biological membrane, proteins require specific lipids of distinctive length and chain saturation surrounding them. The active tuning of the membrane thickness therefore opens new possibilities in the study and manipulation of membrane proteins. Here, we introduce the concept of stapling phospholipids to different degrees of interdigitation depth by mixing 1,3-diamidophospholipids with single-chain bolalipids. The mixed membranes were studied by calorimetric assays, electron microscopy, X-ray, and infrared measurements to provide a complete biophysical characterization of membrane stapling. The matching between the diamidophospholipids and the bolalipids can be so strong as to completely induce a new phase that is more stable than the gel phase of the individual components.

3.
Angew Chem Int Ed Engl ; 59(22): 8608-8615, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32124529

RESUMO

Remote and minimally-invasive modulation of biological systems with light has transformed modern biology and neuroscience. However, light absorption and scattering significantly prevents penetration to deep brain regions. Herein, we describe the use of gold-coated mechanoresponsive nanovesicles, which consist of liposomes made from the artificial phospholipid Rad-PC-Rad as a tool for the delivery of bioactive molecules into brain tissue. Near-infrared picosecond laser pulses activated the gold-coating on the surface of nanovesicles, creating nanomechanical stress and leading to near-complete vesicle cargo release in sub-seconds. Compared to natural phospholipid liposomes, the photo-release was possible at 40 times lower laser energy. This high photosensitivity enables photorelease of molecules down to a depth of 4 mm in mouse brain. This promising tool provides a versatile platform to optically release functional molecules to modulate brain circuits.


Assuntos
Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Raios Infravermelhos , Nanotecnologia/métodos , Animais , Fenômenos Biomecânicos , Ouro/química , Camundongos , Fosfolipídeos/metabolismo
4.
Langmuir ; 35(34): 11210-11216, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31343180

RESUMO

Liposomes of specific artificial phospholipids, such as Pad-PC-Pad and Rad-PC-Rad, are mechanically responsive. They can release encapsulated therapeutics via physical stimuli, as naturally present in blood flow of constricted vessel segments. The question is how these synthetic liposomes change their structure in the medically relevant temperature range from 22 to 42 °C. In the present study, small-angle neutron scattering (SANS) was employed to evaluate the temperature-induced structural changes of selected artificial liposomes. For Rad-PC-Rad, Pad-Pad-PC, Sur-PC-Sur, and Sad-PC-Sad liposomes, the SANS data have remained constant because the phase transition temperatures are above 42 °C. For Pad-PC-Pad and Pes-PC-Pes liposomes, whose phase transitions are below 42 °C, the q-plots have revealed temperature-dependent structural changes. The average diameter of Pad-PC-Pad liposomes remained almost constant, whereas the eccentricity decreased by an order of magnitude. Related measurements using transmission electron microscopy at cryogenic temperatures, as well as dynamic light scattering before and after the heating cycles, underpin the fact that the non-spherical liposomes flatten out. The SANS data further indicated that, as a consequence of the thermal loop, the mean bilayer thickness increased by 20%, associated with the loss of lipid membrane interdigitation. Therefore, Pad-PC-Pad liposomes are unsuitable for local drug delivery in the atherosclerotic human blood vessel system. In contrast, Rad-PC-Rad liposomes are thermally stable for applications within the human body.


Assuntos
Temperatura Alta , Lipossomos/química , Difração de Nêutrons , Fosfolipídeos/química , Espalhamento a Baixo Ângulo
5.
Soft Matter ; 14(19): 3978-3986, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29736539

RESUMO

Envisioning the next generation of drug delivery nanocontainers requires more in-depth information on the fundamental physical forces at play in bilayer membranes. In order to achieve this, we combine chemical synthesis with physical-chemical analytical methods and probe the relationship between a molecular structure and its biophysical properties. With the aim of increasing the number of hydrogen bond donors compared to natural phospholipids, a phospholipid compound bearing urea moieties has been synthesized. The new molecules form interdigitated bilayers in aqueous dispersions and self-assemble at soft interfaces in thin layers with distinctive structural order. At lower temperatures, endothermic and exothermic transitions are observed during compression. The LC1 phase is dominated by an intermolecular hydrogen bond network of the urea moieties leading to a very high chain tilt of 52°. During compression and at higher temperatures, presumably this hydrogen bond network is broken allowing a much lower chain tilt of 35°. The extremely different monolayer thicknesses violate the two-dimensional Clausius-Clapeyron equation.

6.
Langmuir ; 34(10): 3215-3220, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29455537

RESUMO

Nanomedicine suffers from low drug delivery efficiencies. Mechanoresponsive vesicles could provide an alternative way to release active compounds triggered by the basic physics of the human body. 1,3-Diamidophospholipids with C16 tails proved to be an effective building block for mechanoresponsive vesicles, but their low main phase transition temperature prevents an effective application in humans. As the main phase transition temperature of a membrane depends on the fatty acyl chain length, we synthesized a C17 homologue of a 1,3-diamidophospholipid: Rad-PC-Rad. The elevated main phase transition temperature of Rad-PC-Rad allows mechanoresponsive drug delivery at body temperature. Herein, we report the biophysical properties of Rad-PC-Rad monolayer and bilayer membranes. Rad-PC-Rad is an ideal candidate for advancing the concept of physically triggered drug release.

7.
J Control Release ; 264: 14-23, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-28803115

RESUMO

Liposomes formulated from the 1,3-diamidophospholipid Pad-PC-Pad are shear-responsive and thus promising nano-containers to specifically release a vasodilator at stenotic arteries. The recommended preclinical safety tests for therapeutic liposomes of nanometer size include the in vitro assessment of complement activation and the evaluation of the associated risk of complement activation-related pseudo-allergy (CARPA) in vivo. For this reason, we measured complement activation by Pad-PC-Pad formulations in human and porcine sera, along with the nanopharmaceutical-mediated cardiopulmonary responses in pigs. The evaluated formulations comprised of Pad-PC-Pad liposomes, with and without polyethylene glycol on the surface of the liposomes, and nitroglycerin as a model vasodilator. The nitroglycerin incorporation efficiency ranged from 25% to 50%. In human sera, liposome formulations with 20mg/mL phospholipid gave rise to complement activation, mainly via the alternative pathway, as reflected by the rises in SC5b-9 and Bb protein complex concentrations. Formulations having a factor of ten lower phospholipid content did not result in measurable complement activation. The weak complement activation induced by Pad-PC-Pad liposomal formulations was confirmed by the results obtained by performing an in vivo study in a porcine model, where hemodynamic parameters were monitored continuously. Our study suggests that, compared to FDA-approved liposomal drugs, Pad-PC-Pad exhibits less or similar risks of CARPA.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Nitroglicerina/administração & dosagem , Animais , Proteínas do Sistema Complemento/metabolismo , Humanos , Lipossomos , Masculino , Soro , Suínos
8.
Beilstein J Org Chem ; 13: 1099-1105, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28684989

RESUMO

It is currently not possible to directly measure the lateral pressure of a biomembrane. Mechanoresponsive fluorescent probes are an elegant solution to this problem but it requires first the establishment of a direct correlation between the membrane surface pressure and the induced color change of the probe. Here, we analyze planarizable dithienothiophene push-pull probes in a monolayer at the air/water interface using fluorescence microscopy, grazing-incidence angle X-ray diffraction, and infrared reflection-absorption spectroscopy. An increase of the lateral membrane pressure leads to a well-packed layer of the 'flipper' mechanophores and a clear change in hue above 18 mN/m. The fluorescent probes had no influence on the measured isotherm of the natural phospholipid DPPC suggesting that the flippers probe the lateral membrane pressure without physically changing it. This makes the flipper probes a truly useful addition to the membrane probe toolbox.

9.
Angew Chem Int Ed Engl ; 56(23): 6515-6518, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28444913

RESUMO

Phospholipid liposomes are archetypical self-assembled structures. To minimize the surface tension, the vesicles typically are spherical. Deciphering the bilayer code, the basic physical interactions between phospholipids would allow these molecules to be utilized as building blocks for novel, non-spherical structures. A 1,2-diamidophospholipid is presented that self-assembles into a cuboid structure. Owing to intermolecular hydrogen bonding, the bilayer membranes form an exceptionally tight subgel packing, leading to a maximization of flat structural elements and a minimization of any edges. These conditions are optimized in the geometrical structure of a cube. Surprisingly, the lateral surface pressure in the membrane is only one third of the value typically assumed for a bilayer membrane, questioning a long-standing rule-of-thumb.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...